1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
use std::iter::Peekable;
use std::cmp::Ordering;
use Regex::*;
use Regex;

/// The set of some object's derivatives with respect to an alphabet `T`.
#[derive(Debug, Clone)]
pub struct Derivatives<T, R> {
    /// Holds a set of pairs `(chars, derivative)`, meaning that the derivative
    /// with respect to any element of `chars` is `derivative`.
    pub d: Vec<(Vec<T>, R)>,
    /// The derivative with respect to any character not listed in `d`.
    pub rest: R,
}

impl<T, R> Derivatives<T, R> {
    pub fn map<F: FnMut(R) -> R>(self, mut f: F) -> Derivatives<T, R> {
        Derivatives {
            d: self.d.into_iter().map(|(x, r)| (x, f(r))).collect(),
            rest: f(self.rest),
        }
    }
}

/// A trait for types which can be differentiated with respect to an alphabet
/// `T`.
pub trait Differentiable<T>: Sized {
    fn derivative(&self) -> Derivatives<T, Self>;
}

struct Union<T: Ord, It1: Iterator<Item=T>, It2: Iterator<Item=T>> {
    a : Peekable<It1>,
    b : Peekable<It2>,
}
fn union<T: Ord, It1: Iterator<Item=T>, It2: Iterator<Item=T>>(a: It1, b: It2) -> Union<T, It1, It2> {
    Union { a: a.peekable(), b: b.peekable() }
}
impl<T: Ord, It1: Iterator<Item=T>, It2: Iterator<Item=T>> Iterator for Union<T, It1, It2> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        match match self.a.peek() {
            Some(av) => match self.b.peek() {
                Some(bv) => av.cmp(bv),
                None => Ordering::Less,
            },
            None => Ordering::Greater,
        } {
            Ordering::Less => {
                self.a.next()
            }
            Ordering::Greater => {
                self.b.next()
            }
            Ordering::Equal => {
                self.a.next();
                self.b.next()
            }
        }
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        let (a1, a2) = self.a.size_hint();
        let (b1, b2) = self.b.size_hint();
        (a1 + b1,
         if let (Some(a2), Some(b2)) = (a2, b2) {
             Some(a2 + b2)
         } else {
             None
         })
    }
}

struct Inter<T: Ord, It1: Iterator<Item=T>, It2: Iterator<Item=T>> {
    a : Peekable<It1>,
    b : Peekable<It2>,
}
fn inter<T: Ord, It1: Iterator<Item=T>, It2: Iterator<Item=T>>(a: It1, b: It2) -> Inter<T, It1, It2> {
    Inter { a: a.peekable(), b: b.peekable() }
}
impl<T: Ord, It1: Iterator<Item=T>, It2: Iterator<Item=T>> Iterator for Inter<T, It1, It2> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        loop {
            match if let (Some(av), Some(bv)) = (self.a.peek(), self.b.peek()) {
                av.cmp(bv)
            } else {
                return None
            } {
                Ordering::Less => {
                    self.a.next();
                }
                Ordering::Greater => {
                    self.b.next();
                }
                Ordering::Equal => {
                    self.a.next();
                    return self.b.next();
                }
            }
        }
    }
}

struct Subtract<T: Ord, It1: Iterator<Item=T>, It2: Iterator<Item=T>> {
    a : Peekable<It1>,
    b : Peekable<It2>,
}
fn subtract<T: Ord, It1: Iterator<Item=T>, It2: Iterator<Item=T>>(a: It1, b: It2) -> Subtract<T, It1, It2> {
    Subtract { a: a.peekable(), b: b.peekable() }
}
impl<T: Ord, It1: Iterator<Item=T>, It2: Iterator<Item=T>> Iterator for Subtract<T, It1, It2> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        loop {
            match match (self.a.peek(), self.b.peek()) {
                (Some(av), Some(bv)) => av.cmp(bv),
                (_, None) => Ordering::Less,
                (None, _) => return None,
            } {
                Ordering::Less => {
                    return self.a.next();
                }
                Ordering::Greater => {
                    self.b.next();
                }
                Ordering::Equal => {
                    self.a.next();
                    self.b.next();
                }
            }
        }
    }
}

enum Set<T> {
    Just(Vec<T>),
    Not(Vec<T>),
}

impl<T: Ord + Clone> Set<T> {
    fn inter(&self, b: &[T]) -> Set<T> {
        use self::Set::*;
        match *self {
            Just(ref a) => {
                Just(inter(a.iter().cloned(), b.iter().cloned()).collect())
            }
            Not(ref a) => {
                Just(subtract(b.iter().cloned(), a.iter().cloned()).collect())
            }
        }
    }
    fn subtract(&self, b: &[T]) -> Set<T> {
        use self::Set::*;
        match *self {
            Just(ref a) => {
                Just(subtract(a.iter().cloned(), b.iter().cloned()).collect())
            }
            Not(ref a) => {
                Not(union(a.iter().cloned(), b.iter().cloned()).collect())
            }
        }
    }
}

fn combine<T: Ord + Clone, R, S, F: FnMut(&[&R]) -> S>(v: &[Derivatives<T, R>], mut f: F) -> Derivatives<T, S> {
    fn go<'a, T: Ord + Clone, R, S, F: FnMut(&[&R]) -> S>(
        v: &'a [Derivatives<T, R>],
        f: &mut F,
        what: Set<T>,
        current: &mut Vec<&'a R>,
        out: &mut (Vec<(Vec<T>, S)>, Option<S>)
    ) {
        if let Set::Just(ref v) = what {
            if v.len() == 0 {
                // prune
                return;
            }
        }
        if v.len() == 0 {
            let reg = f(&current);
            match what {
                Set::Just(c) => out.0.push((c, reg)),
                Set::Not(_) => {
                    assert!(out.1.is_none());
                    out.1 = Some(reg);
                }
            }
            return;
        }
        let (first, rest) = v.split_at(1);
        let first = &first[0];
        let mut all_chars = Vec::new();
        for &(ref chars, ref reg) in first.d.iter() {
            all_chars = union(all_chars.into_iter(), chars.iter().cloned()).collect();
            let inter = what.inter(&chars);
            current.push(reg);
            go(rest, f, inter, current, out);
            current.pop();
        }
        let inter = what.subtract(&all_chars);
        current.push(&first.rest);
        go(rest, f, inter, current, out);
        current.pop();
    }
    let mut result = (Vec::new(), None);
    let mut regexes = Vec::new();
    go(v, &mut f, Set::Not(Vec::new()), &mut regexes, &mut result);
    Derivatives {
        d: result.0,
        rest: result.1.unwrap(),
    }
}

impl<T: Ord + Clone> Differentiable<T> for Regex<T> {
    fn derivative(&self) -> Derivatives<T, Regex<T>> {
        match *self {
            Null => Derivatives { d: Vec::new(), rest: Null },
            Empty => Derivatives { d: Vec::new(), rest: Null },
            Except(ref cs) => {
                if cs.len() == 0 {
                    Derivatives { d: Vec::new(), rest: Empty }
                } else {
                    Derivatives { d: vec![(cs.clone(), Null)], rest: Empty }
                }
            }
            Alt(ref cs, ref xs) => {
                let mut ds = Vec::with_capacity(if cs.len() > 0 { 1 } else { 0 } + xs.len());
                if cs.len() > 0 {
                    ds.push(Derivatives { d: vec![(cs.clone(), Empty)], rest: Null });
                }
                ds.extend(xs.iter().map(Differentiable::derivative));
                combine(&ds, |regexes| Alt(Vec::new(), regexes.iter().map(|r| (*r).clone()).collect()))
            }
            And(ref xs) => {
                let ds: Vec<_> = xs.iter().map(Differentiable::derivative).collect();
                combine(&ds, |regexes| And(regexes.iter().map(|r| (*r).clone()).collect()))
            }
            Not(ref x) => x.derivative().map(|r| Not(Box::new(r))),
            Cat(ref xs) => {
                let mut ds = Vec::new();
                for i in 0..xs.len() {
                    ds.push(xs[i].derivative().map(|r| {
                        let mut v = vec![r];
                        v.extend(xs[i+1..].iter().cloned());
                        Cat(v)
                    }));
                    if !xs[i].nullable() {
                        break;
                    }
                }
                combine(&ds, |regexes| Alt(Vec::new(), regexes.iter().map(|r| (*r).clone()).collect()))
            }
            Kleene(ref x) => x.derivative().map(|r| Cat(vec![r, Kleene(x.clone())])),
        }
    }
}

// Derivatives of "regular vectors", as described in "Regular-expression derivatives reexamined" by Owens et al.
impl<T: Ord + Clone, R: Differentiable<T> + Clone> Differentiable<T> for Vec<R> {
    fn derivative(&self) -> Derivatives<T, Vec<R>> {
        let v: Vec<Derivatives<T, R>> = self.iter().map(Differentiable::derivative).collect();
        combine(&*v, |xs: &[&R]| xs.iter().map(|&x| x.clone()).collect())
    }
}